Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Clinics ; 70(2): 126-135, 2/2015. tab, graf
Article in English | LILACS | ID: lil-741429

ABSTRACT

OBJECTIVE: In most cases of pediatric liver transplantation, the clinical scenario of large-for-size transplants can lead to hepatic dysfunction and a decreased blood supply to the liver graft. The objective of the present experimental investigation was to evaluate the effects of ischemic preconditioning on this clinical entity. METHODS: Eighteen pigs were divided into three groups and underwent liver transplantation: a control group, in which the weights of the donors were similar to those of the recipients, a large-for-size group, and a large-for-size + ischemic preconditioning group. Blood samples were collected from the recipients to evaluate the pH and the sodium, potassium, aspartate aminotransferase and alanine aminotransferase levels. In addition, hepatic tissue was sampled from the recipients for histological evaluation, immunohistochemical analyses to detect hepatocyte apoptosis and proliferation and molecular analyses to evaluate the gene expression of Bax (pro-apoptotic), Bcl-XL (anti-apoptotic), c-Fos and c-Jun (immediate-early genes), ischemia-reperfusion-related inflammatory cytokines (IL-1, TNF-alpha and IL-6, which is also a stimulator of hepatocyte regeneration), intracellular adhesion molecule, endothelial nitric oxide synthase (a mediator of the protective effect of ischemic preconditioning) and TGF-beta (a pro-fibrogenic cytokine). RESULTS: All animals developed acidosis. At 1 hour and 3 hours after reperfusion, the animals in the large-for-size and large-for-size + ischemic preconditioning groups had decreased serum levels of Na and increased serum levels of K and aspartate aminotransferase compared with the control group. The molecular analysis revealed higher expression of the Bax, TNF-alpha, I-CAM and TGF-beta genes in the large-for-size group compared with the control and large-for-size + ischemic preconditioning groups. Ischemic preconditioning was responsible for an increase in c-Fos, IL-1, IL-6 and e-NOS ...


Subject(s)
Food Microbiology , Commerce , Escherichia coli/isolation & purification , Food Contamination , India , Salmonella/isolation & purification , Shigella/isolation & purification , Staphylococcus aureus/isolation & purification
2.
Clinics ; 68(8): 1152-1156, 2013. tab, graf
Article in English | LILACS | ID: lil-685430

ABSTRACT

OBJECTIVE: The ideal ratio between liver graft mass and recipient body weight for liver transplantation in small infants is unknown; however, if this ratio is over 4%, a condition called large-for-size may occur. Experimental models of large-for-size liver transplants have not been described in the literature. In addition, orthotopic liver transplantation is marked by high morbidity and mortality rates in animals due to the clamping of the venous splanchnic system. Therefore, the objective of this study was to create a porcine model of large-for-size liver transplantation with clamping of the supraceliac aorta during the anhepatic phase as an alternative to venovenous bypass. METHOD: Fourteen pigs underwent liver transplantation with whole-liver grafts without venovenous bypass and were divided into two experimental groups: the control group, in which the weights of the donors were similar to the weights of the recipients; and the large-for-size group, in which the weights of the donors were nearly 2 times the weights of the recipients. Hemodynamic data, the results of serum biochemical analyses and histological examination of the transplanted livers were collected. RESULTS: The mortality rate in both groups was 16.5% (1/7). The animals in the large-for-size group had increased serum levels of potassium, sodium, aspartate aminotransferase and alanine aminotransferase after graft reperfusion. The histological analyses revealed that there were no significant differences between the groups. CONCLUSION: This transplant method is a feasible experimental model of large-for-size liver transplantation. .


Subject(s)
Animals , Liver Transplantation/methods , Liver/anatomy & histology , Aspartate Aminotransferases/blood , Body Weight , Feasibility Studies , Hemodynamics , Models, Animal , Organ Size , Potassium/blood , Reproducibility of Results , Swine , Sodium/blood , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL